

Vessel Systems Include:

- 6V92TA Engine
- Raw Water System
- Engine Jacket Water System
- Engine Lube Oil System
- Fuel Oil System
- DDEC Engine System

- DDEC Vessel Components
- Reintjes Gear
- Hydraulic Steering
- C02 Fire Suppression
- Electrical System
- Dewatering System
- Emergency Window Release System

6V92TA Detroit Diesel Engine

- ◆ 435 HP
- ◆2200 RPM (max)
- DDEC Equipped
- Turbocharged
- After cooled
- Right handRotation

Raw Water System

Major Components

- Sea valve
- Sea strainers
- R/W pump
- ♦ F/O cooler
- Heat exchanger

- Restrictor plate
- Deicing valves
- Drip less shaft seal
- ♦ R/G oil cooler
- Steering system cooler
- Muffler

Sea Valve

- Butterfly valve
- Stainless steel body

Sea Strainer

- Vertical duplex bron strainer
- Plexiglass viewing cylinders
- 4" monel strainer basket

R/W Pump

- Jabsco pump
- ♦ 67 gpm

Fuel Cooler

- Cools fuel returning to tank
- Maintains fuel temp. below90 deg. F

Heat Exchanger

Restrictor Plate

1 inch opening

Divertsflow fwdto R/G

Shaft Seal

Raw Water provides flushing and cooling

Shaft Seal

Raw Water provides flushing and cooling

Engine Jacket Water System

Jacket Water System

- 12 GallonCapacity
- Temp.Range of160 205deg. F

Coolant Recovery Bottle

Jacket Water Pump

- Driven off the right bank front cam gear
- ◆ 160 GPM

J/W Pump

Engine Lube Oil System

Characteristics

- 40 WT Oil
- 5.5 Gal Capacity
- Dual Oil Pumps
- Oil Pressures
 - Cruising49 to 70 psi
 - □Minimum @ ldle 5 psi

Lube Oil Pump

- Dual pump system
 - Scavenging pump
 - Oil pump
- 37 GPM rating

Lube Oil Cooler

- J/W Cooled
- Maintains oil temp.
 between 200 and 250 deg. F

Fuel Oil System

Major Components

- Fuel tank
- Fuel tank vent
- Emergency cutoff valve
- Primary filter
- Priming pump

- Fuel pump
- Secondary filter
- Restricted orifice
- Fuel cooler
- ECM fuel cooler plate
- Back PressureRelief Check Valve

Fuel Tank

- Capacity:
 - 100% 394 gal.
 - 95% 373 gal.
 - 16 gal unusable
- Centered on keel
- Located between frames 5 and 8
- 3 inspection covers

- Baffles installed at frame 6 and 7
- Suction piping at frame 6
- Fuel suction box

Fuel Tank Vent

Primary Fuel Filter

Restricted Orifice

Air Sep System

System Components

- Cotton Filter Element
- Air Inlet RestrictionIndicator
- Vacuum Limiter
- Collector Assy.
- Check Valve
- Oil Drain Hose

Cotton Filter Element and Collector Housing

Air Inlet Restriction Indicator

Vacuum Limiter

Oil Drain Check Valve and Hose

Air Box Check Valve

- Check ValveOpensat Idle
- No Airflow above 1400RPM
- Air Box Drains to Engine Crankcase

DETROIT DIESEL

Electronic Controls

DDEC Features

- Computerized Electronic Engine Governing System
- Electronic Fuel Injection System
- Self Diagnostics
- Improved Engine Performance
- Rapid Warm-Up
- Precise Engine Synchronization
- Low Idle Operation
- Engine Stall, Transmission and Overload Protection

DDEC Components

- Electronic Control Module (ECM)
- ◆ Electronic Unit Injector (EUI)
- Sensors:
- Synchronous Reference Sensor (SRS)
- Timing Reference Sensor (TRS)
- Turbo Boost Sensor
- Coolant Temperature Sensor
- Coolant Level Sensor
- Oil and Fuel Temperature Sensors
- Oil and Fuel Pressure Sensors

DDEC III - How it works.....

- Sensors and operator inputs send signals to the Electronic Control Module
- Information sent to the Electronic Control Module is used to precisely regulate engine performance

Electronic Control Module (ECM)

- The ECM is the computer for each individual engine
- Performs diagnostic checks of engine systems
- Controls basic engine functions

Turbo Boost Sensor

- Monitors turbocharger compressor discharge
- Provides
 data to ECM
 for smoke
 control
 during
 engine
 acceleration

Coolant Temperature Sensor

- Monitors coolant temperature
- Triggers engine alarm for engine protection

Coolant Level Sensor

Triggers engine alarm if coolant level drops

Oil and Fuel Temperature Sensors

- Oil temp sensor
- Triggers engine alarm
- Provides ECM with data to improve cold starts and reduce white smoke
- Fuel temp sensor
- Provides ECM with data to maintain horsepower based on fuel temperature

Oil and Fuel Pressure Sensors

- Both alarms are variable
- Trigger engine alarm if pressure drops at a given RPM

L/O Pressure Alarm Setpoints

DDEC Vessel Components

System Components

- Throttles
- Station Control Panel
- ◆ Electronic Display Module (EDM)
- Control Station Interface Module (CSIM)
- ◆ Engine Room Interface Module (ERIM)
- Electronic Gear Interface Module (EGIM)
- ◆ Manufactures Interface Module (MIM)
- Emergency back-up panel

Station Control Panel

- 4 button
 control panel
 located at eac
 throttle unit
- Allows throttle system set-up
- Allows you to set various operation modes

Control Panel Operation Low Idle Button

STATION

ACTIVE

SYNC

LO IDLE

ENG OVR

Reduces
RPM to 600

Still allows full throttle range

Control Panel Operation Sync Button

- Synchronizes the speed of both engines under one throttle
- Does not synchronize clutch detents

ELECTRONIC CONTROLS

ENGINE OVERLOAD PROTECTION

- ◆ EDM sounds and flashes "OVERLOAD WARNING" when engine output exceeds the maximum allowed torque limit for more than one minute.
- After two additional minutes, EDM alarm sounds and flashes "TORQUE OVERLOAD". Engine will ramp down to the maximum allowed torque limit.

Control Panel Operation Eng Ovr Button

ACTIVE

SYNC

LO IDLE ENG OVR

Pressing and releasing the ENG OVR button restores full power range for two minutes.

ELECTRONIC CONTROLS

Control Panel Operation Neutral Throttle Operation

ACTIVE STUC LO LE ENGOVE

Press and hold Lo Idle and Sync buttons for 1 sec.

ELECTRONIC CONTROLS

Control Panel Operation Transfer Throttle Stations

- Match throttle levers to clutch detent of active station
- Press the station active button
- The red LED light will begin to flash
- Match throttle levers to the previous station's engine speed setting
- You have 5 seconds to complete procedure

PORT ENGINE EDM

Electronic Display Module

(EDM)

- **♦Displays engine and R/G information**
- ◆The keypad allows you to access information and features
- **◆Audible alarm and displays flash codes**
- Edms are located on Open and Enclosed Bridges

Control Station Interface Module (CSIM)

- >A CSIM is required with each throttle station control station
- All signals sent from the throttles and control panel are received in this module
- The CSIMs are located in the Enclosed Bridge

- Central processor of the control engine ROOM INTERFACE
- ◆ Translates signal from CSIMs and sends it to the ECMs and EGIMs
- Located in the Auxiliary Machinery

CONTROL STATION BACKUP PANEL

POST Mile

Manual Man

BERTER

BATTERS(+)

Barrison(-)

Electronic Gear Interface Module (EGIM)

- ◆ Receives the shift command from the ERIM and sends it to the R/G
- Located in the Auxiliary Machinery Space

IGNITION

D'AGNOSTIC CONNECT' IR

- This is a junction box between the **ECM** and the **ERIM**
 - Contains Diagnostic lights and a DDR connection
- Located on the inboard side of each engine

ET IL

POWER

Emergency Back-Up

EMERGENCY MANUAL CONTROL

TO ACTIVATE MANUAL CONTROL:

L LIFT BED CAP AND BOYE SWITCH ELECTRONIC WARN CONTROL IS DISABLED. ONLY THE WASTER STATION BACKUP THROTTLE AND ELUTCH CONTROL STATION SHALL BE OPERATIONAL.

BRANGAL CONTROL IS NOW COTAMED

PORT THROTTLE

FORWARD

ECTRONIC MARINE

CLOSE NED-CAP.
 DEPRESS STATION ACTIVE BUTTON AT ANY CONTROL
 STATION AND TAKE CONTROL AS ACCIONS.

STBD THROTTLE

FORWARD

ACTIVE SYNC

- ◆ Directly connected to the ERIM
- Is used in the event of throttle failure
 - Located in the Enclosed Bridge

Reintjes Reduction Gear

R/G System Components

- Gear type pump
- Oil filter
- Thermostatic Valve
- Heat exchanger
- Pressure build up valve
- Control valve
- Come-home feature

Red Gear L/O Drawing

Oil Pressure

- Normal operating pressure:
 - 230 to 290 psi engaged
 - **□**58 to 66 psi disengaged
- Low oil pressure alarm 174 psi

Oil Temperatures

- Normal operating temperatures 140 to 176 deg. F
- High oil temp alarm 194 deg. F

Oil Pump

- Gear type
- Provides flow

Duplex Filter

- 2 position change-over lever
- Reusable mesh element (60 micron)
- Dirty filter indicator:
 - Mechanical pop-up button
 - ☐ 72 to 76 psi differential

Bypass Valve

 Used to divert flow around thermostatic valve in the event of failure

Thermostatic Valve

- Maintains gear L/O temp.
- Bypasses cooler until temp.reaches150 deg. F

Heat Exchanger

- Copper tube bundle
- Raw water cooled
- Cleanable

Gear Rotation

- Determined by oil line routing to clutch packs from PBV.
 Clutch packs are:
- Main input shaft clutch
- Intermediate shaft clutch

Gear Rotation Stbd Engine FWD Identical

Gear Rotation Port Engine FWD Opposite

Emergency Operation

- **◆ Two failure categories:**
- Electric control failure

Pressure oil supply failure

Electric Control Failure

- Control valve can be operated manually
- Valve can be locked in either direction with attached pin
- NOTE: End boot must be removed prior to locking

Pressure Oil Supply Failure

- "Come home" feature
- Must not operate over 70% rated speed

Shaft Seal

- John Crane stern tube seal
- Mechanical seal
- Self adjusting
- Maintenance free
- Secondary backup seal for emergencies

Shaft Seal

- PSS stern tube seal
- Mechanical seal
- Self adjusting
- Maintenance free

Steering System

System Components

- Helm unit
- Joystick
- Reservoir
- Steering pump
- Filter
- Cooler

- Steering control valve
- Power cylinder
- Feed back units
- Auto pilot pump
- Rudders
- Steering pressure alarms

Helm Unit

Rotary pump

Supplies oil to a servo cylinder

Joystick

- Single axis
- Call up button to energize
- Sends signal to steering control valve

Reservoir

- 1 gallon capacity
- Tellus T-15 hydraulic fluid
- Sight glass
- Pressurized to 20 30 psi
- Pressure gauge

- Pump on each engine
- Provides pressure for steering system
- Pressure is regulated by a flow control valve
- Develops pressure in power circuit to change rudder position
- Under steady conditions, pump circulates oil freely in power circuit

Steering Pump

Filter

- Spin on
- Filters oil flowing into reservoir
- Built in bypass

Cooler

Maintains proper system temperature

Steering Control Valve

- Sliding spool valve
- Electrically operated from joysticks

- Attaches to STBD tiller
- Can produce a thrust up to 3500 lbs.
- Internal valve assembly that limits pressure to 950 psi. in manual circuit
- Provides an automatic return to manual steering if power pump flow is not available

- Connected to port tiller
- Works as a potentiometer
- Provides
 feedback to
 steering
 system and
 rudder angle
 indicators
- Provides feedback to autopilot

Autopilot Pump

- Autopilot pump is connected to the helm unit lines
- Commands are issued by the autopilot course computer

Rudders

- Stainless steel spade type
- Stainless steel rudder stock
- ◆ Rudders move 70 deg. port to stbd

Steering System

Heating Ventilation Air Condition (HVAC)

System Components

- Sea valve
- Strainer
- R/W pumps
- R/W system piping
- Self contained units
- Control panel
- Compartment ventilation

Sea Valve And Strainer

1/4 turn ball valve

Simplex strainer

Raw Water Pumps

- Pump for each unit
- ◆ 115 VAC
- ◆ 1/12 Hp.
- ◆390 GPH

Self Contained Units

- Contains all A/C components
- 115 VAC
- 1.375 ton unit (16,000 BTU)
- ♦ 8 oz. charge R-22
- Internal heating element
- Uses R/W system in cooling mode
- Energized by either shore power or sea power generators
- Unit circulates air in compartment

- Digital display and keypad
- Located in:
 - Enclosed Bridge
 - Survivors' compartment
- Controls cool or heat modes
- Operates constantly in fan mode
- Thermostat controlled in auto mode
- Programmable climate control

Note: Whenever the Self Contained Units are operated in the cooling mode the sea valve must be opened

Compartment Ventilation

- All major compartments have fresh air natural ventilation
- Forepeak and lazarette are vented through a 2" check ball
- Forward compartment uses a dorade vent

Aux. Machinery Space Ventilation

- A ventilation fan is used to remove battery fumes
- The fan cycles on whenever the batteries are being charged

CO2 Fire Suppression System

SYSTEM COMPONENTS

- Mechanical actuators
- Two 25 lb C02 bottles
- 30 second delay cylinder
- Discharge siren
- 2 electrical pressure switches
- 1 mechanical pressure switch
- Multi-jet discharge nozzle

CO2 System Actuators

- Charge circuit activated by a nitrogen cylinder
- Depressing plunger punctures seal
- 3 locations:
 - Enclosed Bridge
 - Open Bridge
 - Survivors' compartment

- Two 25 lb bottles
- N2 charge activates first bottle
- C02 pressure from 1st bottle activates 2nd bottle
- C02 pressure activates elect. switches and siren

C02 Engine Pre-discharge

- Flashing red light used to warn personnel of eminent C02 discharge
- Located above engine room door

C02 Engine Room Strobe Light

- Used to warn personnel of eminent CO2 discharge
- Located on Engine Room overhead

Engine Shut-down Solenoids

- Used to secure engines prior to CO2 discharge
- Located next to air inlet housing on top of engine

- Provides 30 seconds of discharge delay
- C02 builds pressure in cylinder to eventually lift valve off seat
- Can be manually overridden by pulling handle on bottle

C02 Engine Discharge Light

- Flashing red light used to warn personnel of eminent C02 discharge
- Located above Engine Room door

Multi-jet Discharge Nozzle

Discharges CO2 Into Engine Room

- Located on:
 - Upper console in Enclosed Bridge
 - Center console on Open Bridge

Fwd Compartment Alarm

Alerts
 crewmembers
 that may be
 forward during
 a fire

Electrical System

System Components

- Batteries
- Battery isolation switches
- Battery charger
- Alternators
- 24V DC panel
- 12V DC panel
- 12V powerconverter

- Shore tie
- Sea Power generators
- Sea Power user panel
- Sea power conversion units
- 120V AC panel

Battery Isolation Switches

- Located in Survivors' Compartment
- Allow you to disconnect each bank of batteries
- Battery banks can be paralleled

DC Power Panels

- 24V panel
- ◆12V panel
- All DC power is distributed through these panels
- Monitors voltage and amperage

12 Volt Power Converter

- Mounted to 24V panel
- Power supply on 24V panel
- Power supply must be energized to use 12V panel

120 VAC Panel

- Distributes power to the AC voltage system
- Interlocks on the shore power/sea power breakers
- Monitors voltage and amperage

Bilge Drainage System

Bilge Pump System

Engine Room Dewatering Standpipe

Bilge Pump System

Auto Switch

Control Panel

 Located on aft bulkhead starboard side of Enclosed Steering Station

On/Off/Auto switches for each pump

Alarm Panel

- Located above control panel
- ◆ Visual and audible alarm for each space
- System power light
- Alarm silence/test button

Emergency Window Release System

EWRS Theory

- Two stationary windows, port and stbd, controlled by an electronic switch activated when water is sensed.
- The Emergency Window Release System (EWRS) is provided to allow free transfer of water through the compartment in the event of a damaged pilot house rollover.

EWRS Components

- Compressor assembly
- Water sensor assembly
- Window latch assembly
- Window release test switch
- CO2 back-up actuator

Window Latch

- One assembly for each window
- Each assembly contains:
 - Actuator cylinder
 - Pneumatic system reset switch
 - ■Two way valve

End of Vessel Systems

Questions?